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The dimensions of star-branched macromolecules in dilute solutions were investigated using scaling 
concepts. The quality of the solvent, the rigidity of star branches, their number and degree of 
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I N T R O D U C T I O N  

The aim of the paper 
The size of macromolecular stars in dilute solutions has 

been investigated in a number of theoretical papers 1-3 
but their quantitative results are very contradictory. The 
present approach to polymer systems based on scaling 
concepts makes it possible to consider this problem from a 
new angle 23'24. 

In the paper presented here the asymptotic behaviour 
of the size of long star-branched chains with a large 
number of branches is investigated. The relationship 
between the approaches based on scaling approximations 
and mean-field approximations is shown and the reasons 
for discrepancies between the results in previously pub- 
lished papers 1-a are elucidated. The theoretical results 
are compared to the results of Monte-Carlo calculations 4 
and to the experimental data 5'6. 

Chain parameters and characteristics 
A star consisting of f branches containing n units each 

will be considered (Figure 1). In this case a unit is a part of 
the chain in the longitudinal dimension, so that 1 is equal 
to the chain thickness. In further discussion l = 1 is taken 
to be the unit length. The overall degree of polymerization 
of the star N =fn.  Let p >/1 be the parameter of chain 
rigidity equal to the average number of units in a 
persistent length (or in a Kuhn segment). The chains with 
p ~-1 will be called flexible and those with p > 1 will be 
called stiff. 

We will assume that N, f,  n and n/p>> 1 restricting 
ourselves to the asymptotic case, omitting all the numeri- 
cal coefficients. 

In the accepted approximation the mean-square radius 
of gyration of a star is equal to the mean-square end to end 
length of each branch. In the simplest ease of the Gaussian 
branches without volume interactions we have 

R~(star) "-, np ,~ Np' f  - l (1) 

According to Stockmayer and Z i m m  7 the effect of the 

starlike structure on macromolecular dimensions will be 
characterized by the ratio (the coefficient of star 
contraction) 

R2(star) 
0x = R2(linear) (2) 

where R2(linear) is the size of a linear chain of the same p 
and N, and the subscript x denotes external conditions. 
For  a Gaussian chain we have 

and 
R2(linear) - Np (3) 

9~ _ f  - 1 (4) 

(The coefficient 9~ has been calculated over the entire 

Figure 1 Star-branched macromolecule. The number of 
branches f ,  1, the length of each branch n ,  1, the overall degree 
of polymerization N = f .  n 
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range of f in  ref. 7, and equation (4) is the limiting value of 
go at f>> 1.) 

The coefficient gx determines the ratio of mean con- 
centrations c of units in the volumes of star-branched and 
linear chains 

c~(star) ,.~gx3/2 (5) 
cx(linear) ~, 

For Gaussian chains we have 

co(star) ~_f3/2 (6) 
co(linear) 

Volume interactions in chains lead to their expansion 
compared to the Gaussian size characterized by the 
expansion coefficient 

2 . . . .  R2(linear) 
• 4 tunear) = ~ (7) 

Ro(linear) 

to give 

2,. , R~2(star) 
(star) = ~ (8) 

~:otstar) 

~(star) 
gx = gO~(linear ) (9) 

Since the unit concentration is higher in star-branched 
than linear chains, volume interactions have a greater 
influence on their size and, hence, it might be expected that 
Ctx2(star)/> ~(linear) and, correspondingly, gx ~>go, i.e. the 
Gaussian limit, equations (4)-(6), overestimate the degree 
of compression and density of stars. 

The principal information required for evaluating the 
effect of volume interactions on the properties of polymer 
systems and, in particular, for calculating ~2(star) and #x is 
contained in the temperature-concentration diagram of a 
solution of linear polymers. 

Temperature-concentration diagram of a solution of linear 
polymers 

Figure 2a shows the well-known 4-region diagram of a 
solution of flexible (p = 1) linear polymers 8'9 and Figure 2b 
shows its generalization for stiff chains with p > 1, i.e. a 6-  
region diagram recently obtained by one of the present 
authors 1° (see also ref. 11). Here c is the volume con- 
centration of units in solution, N is the number of units in 
the chain and z = ( T -  O)/T is the relative temperature (we 
restrict ourselves to the condition z >~0). The locations of 
boundaries of regions and the power dependences of the 
characteristics of the system are given in Tables 1 and 
2 8-1°. For the case shown in Figure 2a the value of p 
should be assumed equal to unity. (Since all the power 
dependences for the regions I0 and G coincide, the region 
G has not been considered separately in ref. 10, so that the 
diagram for stiffchains (Figure 2b) was considered to have 
5 regions.) 

For further discussion it is useful to recollect that the 
diagrams plotted on the basis of general scaling ideas 13 
(introduction of power dependences of the characteristics 
of the system on its parameters, linked up at the boun- 
daries of different regions) are based on the following 
assumptions. 

(1) The second virial coefficient of interaction between 
units is proportional to the relative temperature zt4; the 
third virial coefficient is independent of t ;  the interactions 

[÷ ~/ iie 

C 

II. / 

IO G T IIo 

C 

Figure 2 The diagram of state of solution (a) of linear flexible 
(p~-I) polymers and (b) stiff (p> 1 ) polymers. The equations for 
the boundaries are given in Table I 

b 

ofhigher orders in the concentration range considered are 
negligible. 

(2) The size of a linear chain in a dilute solution (regions 
I in the diagrams) is Gaussian in the tri-critical region I0 
(because both binary and ternary unit interactions are 
weak). In the region of a good solvent, I +, the size of the 
expanded chain is determined by Flory's equation 14 

R2+ ~_ N6/5 z2/5 p 2/5 = N2VV(zp) 2vV3 (10) 

where VF = 3/5. 
(3) In region II ( +,  mf, 0) where the chains overlap and 

the solution is semidilute, the thermodynamic properties 
of solution are independent of the molecular weight of 
polymer chains. The thermodynamic unit of solution is a 
blob, i.e. a chain part in the volume ~3 where ¢ is the 
correlation radius of unit density in solution decreasing 
with solution concentration. 

The following conclusions may be drawn from Figure 2 
and Tables 1 and 2s-12: 

(a) For flexible chains (p = 1) the mean-field approxi- 
mation 14 is valid only in 0-regions I0 and II0, in which the 
binary interactions of units are not important. When 
binary interactions prevail (regions I + and II +), the mean- 
field approximation is not valid and leads to the over- 
estimation of the probability of interunit contacts (Table 
2). For stiffchains (p > 1) an additional region Ilmr exists in 
which the predominance of binary interactions is com- 
bined with the meanfield picture of solution. 
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Table 1 The equat ions of  the boundaries in the diagrams o f  state: x = F(N, p, r) or x = F(n, p, 7) 

Diagram Figure 2 Figure 3 Figure 5 Figure 7 
x=C x = O  -1 x = f  X = f  

Regions Funct ions F(N, p, r) or F(n, p, r) 

I 0 - G N--I /2p -3 [2  n- - lP  -1  
I+ -- I1+ N-4/Sp--3/sr " - - 3 / 5  n-615p--2/57--2/5 
G -  Ilmf N--1T - 1  n--3/2pl/2'r--1 
G - -  II 0 N -1[2 o-- lp  1/2 
II mf -- I1+ p - -3 r  p--472 
I lm f  -- II o r pl/272 
I 0 - I+ r = N-U2p 3/2 7 = n-ff2p312 

n-- a/2p3/2 r -  1 N -  l pa r -2  
p3[2 p3[2 
n2p--674 N2/3p--274/3 
n2p312r4 N2[3pl/274[3 

Table 2 The characteristics o f  the system in d i f fe ren t  regions o f  the diagram in Figure 2 

Characterist ic 7r/k T R 2 ~ 2 nB 

Region 

&Fconc/k T nB/~3 

I0 
G cN -1  Np N 
l+ N6/Sr2/Sp2/s 
II + c9]4p3[4r3/4 N(rpc-- 1) 1/4 (rpc 3 ) -  1/2 (73p3c5) - 1/4 
I lmf  TC 2 r - - lpc- - I  r - - l c - -1  
ii 0 c3 hip pc_2 c-- 2 

N- - l /2p-3 /2  

N--4/Sr--3/5p--3]5 
N(rp)3/4c s/4 c 
Nrc rl/2p-3/2c 1/2 
Nc 2 p-3/2c 

(b) A semidilute solution in region II ÷ gives a system of 
densely packed non-overlapping expanded blobs. For 
flexible chains this situation is also retained in region II0 
where the blobs are Gaussian. For stiff chains in regions 
II,~ and II 0 the solution is a system of overlapping 
Gaussian blobs; the degree of overlapping increases with 
chain stiffness (Table 2). 

(c) Boundaries of region II0 are independent of the chain 
stiffness. For stiff chains a 'Gaussian' region G exists 
between regions I0 and II 0. In this region the thermody- 
namic properties of solution are determined by the 
characteristics of chains as a whole (as in region I0) in spite 
of extensive chain overlapping. It should also be noted 
that the effect of broadening of region II 0 with increasing 
concentration (boundary equation z~c) is due to the 
difference between the concentration dependence of pro- 
babilities of binary and temary contacts and is equivalent 
to the effect discussed by Orofino and Flory Is in terms of 
the concentration dependence of the parameter g. 

(d) In all the regions ofa semidilute solution II polymer 
chains may be represented by Gaussian chains of blobs. 
The number of units in a blob, nB, is related to its radius 
according to equation (3) in regions II0 and Ilmt and to 
equation (10) in region II +, when R 2 is replaced by ~2 and 
N is replaced by nB. 

RESULTS 

Layer of grafted chains 

Planar matrix. The problem of the size of a star- 
branched molecule may be formulated as a system of 
chains (star branches) grafted to a spherical surface of a 
minimum radius. For clarity it is useful, however, to start 
from the other limiting case when the matrix is a surface 
with large radius, i.e. a plane. 

Let us consider (according to refs. 16-18 and 23) a 
system of chains with the degrees of polymerization n 
grafted to a planar surface with a mean grafting density of 
1/a where a is the mean surface area per chain (measured 
in units 12= 1). At tr>R 2 (R 2 is the size of the free chain, 

from equations (3) and (10)), the polymer layer consists of 
single coils (within the numerical coefficient) with size R E 
in all directions. At a < R  2 the coils overlap and the 
polymer layer is a semidilute polymer solution in which 
the polymer concentration c is determined by the layer 
height H 

/1 
c= (11) 

aH 

Equation (ll) shows directly that polymer chains 
should stretch to decrease the polymer concentration in 
the layer. The degree of this stretching and the cor- 
responding concentration in the layer may be determined 
from the condition of the minimum of free energy of the 
chain in the layer 

AF AFco,¢ AFel 
(12) 

kT  kT  kT  

where AFco,¢ is the free energy of the chain in a semidilute 
solution at the concentration c due to binary or ternary 
interactions of units and AFel takes into account chain 
stretching from the size R2(c) of a free chain in a semidilute 
solution to the size H of the chain in the layer 

AF: I  H 2 
kT  - R2(c) (13) 

The power dependences AF~o,c and R2(C) in all regions 
of the diagram of the semidilute solution are given in Table 
2. Using these values and the relationship between H and 
c according to equation (11), equation (12) is minimized. 
The result is the diagram of the state of the layer of chains 
grafted to a plane (Figure 3) with the equations for the 
boundaries (Table 1) and power dependences of H and c 
in regions II of the diagram 16-18,23 

/~p~ll3 
H+ ""Hmf~nt~- ) 
H o ~- na-  il2pll4 

(14) 
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II+ 

II mf 

II 0 

0--i 
Figure 3 The diagram of state of the planar layer of stiff (p> 1) 
polymer chains grafted to the surface, a -1 is the grafting density. 
The equations for the boundaries are given in Table 1. For flexible 
chains with p= 1 the regions G and Ilmf disappear and boundaries 
I 0-11 o and II 0-11+ appear 

f C + ~--Cmf ~ a -  2/3(zp) -1/3 
Coma -112p -1/4 

(15) 

It is clear from equation (14) that the common struc- 
tural feature of the layer of chains grafted to a planar 
surface is their stretching: in region II the height of chains 
above the surface is proportional to the degree of 
polymerization n (and increases with the grafting density 
1/a, chain rigidity p and solvent strength z). The unit 
concentration in the layer is also an increasing function of 
the grafting density and is independent of n. 

The only exception is the region G for stiff chains under 
which the chains retain the initial Gaussian size, (equation 
(3)), in spite of considerable overlapping. This is due to low 
unit density in stiff Gaussian coils leading to a low value of 
AF~onc in the G-region even with chain overlapping. 

The structural pattern of the layer of grafted chains in 
regions II becomes particularly clear if the size of blobs is 
included in this consideration. By using the data in Table 2 
for ~(c) and equation (15) for c(a) we find 

~+ ~_a 1/2 (16a) 

~mf'~" (a-c - lp2) 1/3 (16b) 

~0 ~- al /2p 3/4 (16c) 

It can be seen that each chain is a completely extended 
sequence of blobs 

n - - - .  ¢ (17) 
nB 

(where n/nB is the number of blobs in the chain). The 
situation in the layer of grafted chains for the simplest case 
when ~2 = a, close-packed lattice of blobs (flexible chains: 
regions II+ and IIe; stiff chains: region II+) is shown in 
Figure 4. (For stiffchains under conditions IIm: and IIo we 
have ¢2>a. The overall arrangement of blobs cor- 

responds to the interpenetrating lattices, with the lattice 
constant ~, mutually displaced in the direction parallel to 
the surface of the matrix). At each step a chain of blobs is 
removed from the matrix. However, the chain is not 
located in a straight 'tube' with the section a but, rather in 
a 'tube' randomly bent in the directions parallel to the 
surface of the matrix. The chain size in these directions 
corresponds to that of a Gaussian chain of blobs 

to give 

n ~1/2 
D___ - -  ~ (18) 

\nB] 

D2+ ~- n('cp)l/aa x/6 (19a) 

D2=r ~ - D2o ~-np (19b) 

Equations (19a) and (19b) are valid at low degrees of 
extensition ~ = H/n ,~ 1 ; in the general case they contain 
additional factor x; at ~2~ 1 we have r-~C1 _~2 and at 
high extension, when (1 - ~) ~ 1 we have x -~ 1 - ~. 

On the whole the properties of a layer of grafted chains 
important to further discussion may be formulated as 
follows: 

(1) For a layer of chains grafted under condition II the 
direction orthogonal to the matrix surface remains the 
direction singled out at any large distance from the 
matrix. Along this direction a chain of blobs is completely 
extended. 

(2) The concentration of units in the layer is determined 
by the grafting density of chains and is independent of 
their degree of polymerization. 

Spherical matrix. A system o f f  chains grafted to the 
outer surface of the spherical matrix of the radius RM 19'23 
will now be considered. Let the surface area of grafting per 
chain be smaller than the size of the free chain, 
ao~-R2M/f<R 2, so that the chains overlap forming a 
common layer (condition II). 

According to the results reported in the previous 
section the existence of the matrix ensures chain stretch- 
ing normal to it. This makes it possible to separate the 
total spherical layer into thin quasiplanar layers with 
variable density of grafting 1/a(r) where 

(RM + r) 2 
a(r) ~- (20) 

f 

( 

" / / / / / / /1~/ / / / / /1~ ~ / / / / / / I / / / I / / / / I / / / I /  

Figure 4 Blob picture of the planar layer of grafted flexible 
(p~- 1) polymer chains 
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It has been shown above that the concentration of units 
in a layer is independent of n and hence it is possible to 
determine c(r) by substituting the values of a(r) into 
equation (15). The layer height H was found from the 
evident condition 

H 

f c(r)(RM + r)2dr ~-f" (21) /1 

o 

Equations (15) and (21) give 

II +Ilmr:  f 2 / a ( z p )  - I / a [ ( R  M + H )  5/3 - RM 5/3] ~ f ' n  (22a) 

IIo: fl/2p - , / ,[  (RM + n )  2 -RM 2] ~-f'n (22b) 

In the limit H ,~ RM equations (22a and b) transformed 
into equation (14) --  the case of a planar matrix, i.e. for the 
chains the size of which is much smaller than that of the 
matrix its curvature is not revealed. 

In our case another limit, H >> RM, is of interest; for this 
limit we obtain from equations (22a) and (22b) 

I 

G ~ I  I e 

f 
Figure 5 The diagram of state of stiff (p> 1) polymer chains 
grafted to a small spherical matrix, f is the number of the grafted 
chains. The equations for the boundaries are given in Table 1. For 
flexible chains with p = l  the regions G and Ilmf disappear and the 
boundary II 0 -  I1+ appears 

H+ ~-Hmf~na/5(zpf) Us (23a) 

Ho"~nX/2fl/4p Us (23b) 

Before discussing these results we will consider the 
range of their applicability and construct the diagram of 
state for grafted chains. The derivation of equations (22a), 
(22b), (23a) and (23b) was based on equation (15) valid for 
regions II in Figures 2 and 3. Let us prove that the 
conditions for region II are actually fulfilled over the 
entire layer of chains grafted to the spherical matrix. Since 
the area of 'grafting', equation (20), increases with the 
distance r from the matrix surface to the periphery of the 
layer, the mean layer density decreases with r 

( f 2 ~ l / 3 r _ 4 / 3  
C + ~--- Cmf ~ f 2 / 3  (Zp) - 1/3 (RM + r)- 4/3 ~ \~PP/ (24a) 

Co~--fU2p-X/4(RM+r) -1 ~--fl/2p-U4r-1 (24b) 

(Right-hand sides of equations (24a) and (24b) are valid at 
r ~  RM.) The minimum values of density on the periphery 
of the layer r ~ H  are (for H~RM) 

(C)min ~ (Cmf)min ~ n - 4/5 (~p)  - 3/5 f 2 / 5  ( 2 5 a )  

(C0)mi n ~ F/ -  1/2p - 3 / s f  1/4 (25b) 

From Table 1 it follows that these densities correspond 
to regions II in Figures 2 and 3 when the numbers of 
grafted chains f are 

f÷ ~> I (26a) 

fmf />  P 3/2n - 1/2Z - 1 (26b) 

fo >i p3/2 (26c) 

These results together with the data of Table 1 are 
sufficient to obtain 19'2a the diagram of state for the layer 
of chains grafted to a small spherical matrix, Figure 5. As 
the above diagrams (Figures 2 and 3) contain the G -  
region (in which all chains retain the free state characteris- 

a b 

Figure 6 (a) Blob picture of the spherical polymer layer for 
flexible (p-~l) chains and (b) a single chain placed in its cone 
with the straightened axis and the angle ~ f - 1  

tics) if the chains rigidity, p > I, is taken into account. The 
G-II  boundaries are given by the equality sign in 
equations (26a), (26b) and (26c). 

In regions II, i.e. at f>fmi,, the chains are stretched 
according to equations (23a) and (23b) from which it 
follows that this stretching is independent of the size of the 
matrix (when it is small, RM <~H). It can be seen from a 
comparison of equations (14), (23a) and (23b) that the 
extension of grafted chains is much less pronounced for a 
spherical than for a planar matrix. Chains grafted onto a 
small sphere retain the dependence on n the characteristic 
of free chains: H ~ n 1/2 o r  n 3/5. Similarly, the character of 
radical decrease in density: c(r).,, r-1 or r -4/a according 
to equations (24a) and (24c) at r~RM reflects the 
usual shape of the binary correlation function of the unit 
density g(r) in a free chain 8"13. 

Figure 6a shows the blob picture of the layer of chains 
grafted onto the spherical matrix under conditions II +. 
The concentration of units decreases on passing from the 
matrix surface to the periphery of the layer (according to 
equation (24)) and the size of blobs increases (see the 
relationship between ~ and c in Table 2). Each chain is 
represented by a radially ordered system of growing 
blobs, i.e. the chain is 'placed' in a cone with the angle 
,-~ 1/f As is the case for grafting onto a plane, the 
tangential order is absent, i.e. the cone axis is tangentially 
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bent. Figure 6b shows one chain in its cone with the 
straightened axis. The increase in the surface area of the 
cone section with increasing distance from the matrix 
surface leads not only to the radical decrease in unit 
concentration but also to the corresponding decrease in 
the local degree of chain extension (see previous section). 

It should be noted that although the concentration of 
units decreases with increasing distance from the matrix 
surface, the main part of units lies in the peripheral part of 
the sperical layer. Hence, it is easy to determine from 
equations (24a) and (24b) that in region II half of all the 
units occupy the outer part of the layer (the thickness of 
which is not greater than 1/3 of its total height). Con- 
sequently, the properties of the layer are determined to a 
considerable extent by its outer part. It is precisely for this 
reason that we determined the boundaries of regions in 
the diagram in Figure 5 on the basis of characteristics of 
the periphery of the layer (see ref. 19 for greater detail). 

Star size 
Coefficients of star contraction. Equations (23a) and 

(23b) are able to determine the size H~ of chains grafted 
onto a small matrix and also determines the size R~t,tar ) of 
the star as a whole (in an asymptotic approximation 
within the numerical coefficients). Introducing into the 
equations the degree of polymerization of the star N = nf 
we have 23 

R + (star) -~ Rmf(Star) ~- N 3/5 (zp) 1/5.f - 2/5 (27a) 

R0(star) ~- N 1 / 2 p l / S f  - 1/4 (27b) 

RG(star) ~-- N1/2p 1/2f - 1/2 (27c) 

The diagram of state of the star obtained from the 
diagram in Figure 5 by replacing n with N / f  is shown in 
Figure 7. To avoid confusion, it should be emphasized 
that the diagram in Figure 7 characterizes a star in a dilute 
solution and region II takes into account the high 
intramolecular concentration (but does not take into 
account the interstar interactions). 

If we apply the definition of star contraction coefficient 
from equation (2), it can be seen in Figure 7 that generally 
speaking at a given N, p and z the thermodynamic state of 
star consisting of f branches may not coincide with the 
state of a linear chain ( f=  1). In principle, for a flexible 
chain three variants are possible (both chains, a linear 
chain and a star, are under the 0-conditions, in the region 
of a good solvent or the mixed case). For  a stiff chain the 
number of variants increases to five (if regions II + and Ilmr 
in which the size of stars coincides are combined). 
Equations (3), (10) and (27a)--(27c) are used to find all 
possible values of the contraction coefficient gx/y where x 
and y denote the regions of the states of a star and a linear 
chain, respectively, subscript x replaces x/y and the state 
Ilms is included into II + 

go ~- P- 3/4f- 1/2 (28a) 

9 + ~-f-4/5 (28b) 

go/+ ~- N - 1/5z- 2/5p - a/2of - 1/2 (28c) 

g~ ~ f  - 1 (28d) 

g +16 " ~ N l l S z 2 / S P  - 315.]- -4 /5  (28e) 

----,.-- (2 U ---------(2) 

f 

Figure 7 The diagram of state of an isolated star-branched 
macromolecule, p> 1. The equations for the boundaries are given 
in Table I. Figures in brackets correspond to the letters in 
equation (28): a= l ,  b=2, etc. For flexible chains with p = l  the 
regions G and Ilmf disappear and boundary II 0 -  I1+ appears 

The regions of the validity of each coefficient are shown 
in Figure 7 by numbers in brackets corresponding to the 
letters in equations (28a)-(28e): a = 1; b = 2, etc. 

Figure 8 shows the change in the star contraction 
coefficient g with increasing number of branches f i n  a star 
and with increasing strength of the solvent z (horizontal 
and vertical sections of the diagram in Figure 7). Equa- 
tions (28a)-(28e) and Figure 8 show that stiffness plays an 
important part in the behaviour of stars. For flexible 
macromolecules the degree of contraction is always lower 
than the limiting Gaussian value, gG, and for stiff macro- 
molecules the region of maximum contraction, go, applies. 
For flexible stars the degree of contraction is always the 
non-increasing function of solvent strength. For stiff 
macromolecules this type of dependence is observed only 
if the number of branches is relatively large ( f  > p5/2) and 
at a lower f,  g(z) can increase with z (of course, at all z 
values g <  1). 

Expansion coefficients of stars 
Let us now consider the expansion of stars with respect 

to their Gaussian size (equation (8)). Equations (3), (8), (10) 
and (27a)-(27c) yield expansion coefficients in various 
regions of the state of stars (region II,, I in Figure 7 is 
combined with II +) 

0~2+ ~_ N l l S  r215p - 315f 1/5 (29a) 

~t~ "~ p - a/4f l/2 (29b) 

ct~ -~ 1 (29c) 

Equation (29a) represents the expansion of a star in a 
good solvent. It is clear that the square of the expansion 
coefficient of a star is higher by a factor o f f  1/5 than for an 
equivalent linear chain. Equation (29b) shows that a star 
expands not only in the region of a good solvent but also 
in the 0-region. In this case, however, the expansion 
coefficient is independent of N and is determined only by 
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F igure  8 (a) The dependence of the star contraction coefficient 
on the number of star branches and (b) the solvent strength for 
flexible and stiff chains. Figures in brackets correspond to the 
letters in equation (28) 

the number of branches otg~f U2. For stiff macromo- 
lecules with a moderate number of branches,f<p 3/2, the 
stars retain the Gaussian size ~ = I. 

Note that at any fixed value of z the following condition 
is fulfilled: ~2(star)/> ct2(linear) where the sign of equality 
can occur only for stiff macromolecules. 

In experiments the relative chain expansion when the 
solvent strength increases is often determined. The 
relative expansion is characterized by the coefficients 

to the star-branched molecule as a whole. In this case it is 
sufficient to consider the mean unit density in a coil 

N 
d ~  (31) 

without analysing its change inside the coil. For regions of 
a good and a 0-solvent in which the contributions of 
binary and ternary interaction, respectively, prevail, the 
free energy is given by 

AF .~ R 2 N 2 
- f "  ~pp/f+ z ' ~ -  min (32a) 

A F  R 2 N 3 
~-f" ~ p / f +  ~ min (32b) 

( w h e r e  REc--N"'r-lzJ , from equation (1)). The factor f i n  
the first term takes into account the necessity for stretch- 
ing of allfbranches when the star expands. It can be easily 
seen that as a result of minimization equations (27a) and 
(27b) are obtained as well as equation (27c) at f<p 3/2 if the 
condition R 2 ~>R~ is taken into account. These equations 
may be written in the form emphasizing the relationship 
between indices 

R + ~--N~V(zp)VV/3f-2vv/3 (33a) 

Ro ~- N~°p~°/4 f -~,,/2 (33b) 

where vr= 3/5 and Vo= 1/2. 
Hence, the detailed analysis carried out in the Results 

section yields the mean-field size of starlike chains. 
Naturally, this is not surprising if the conditions cor- 
responding to regions Ilmf and II0 of the state diagram in 
which the mean-field approximation is valid, are satisfied. 
It is important, however, that in the scaling region II + 
the mean-field value of the star size is obtained 
(according to equations (27a)-(27c) we have R + = Rmr). 

To analyse the reason for this coincidence the free 
energy of a star in scaling region II + will be considered. 
According to equation (12) and Table 2, by using the 
evaluation of AFco,c the mean density d, equation (31), we 
have: 

(30a) 

(30b) 

where equations (30a) and (30b) are valid at f>p3/2 and 
f<  p3/2, respectively. Hence, for flexible macromolecules 
the relative expansion of a star is always less by a factor of 
f -3 / lo  than that for a linear chain, whereas for stiff 
macromolecules the dependence of relative expansion 
coefficient on the number of branchesfpasses through a 
maximum near f ,~p3/2. 

DISCUSSION 

Star size. Scaling and the mean field approximations 
The method for the determination of size of a polymer 

chain (by minimization of equation (12)) has been pro- 
posed by Flory 14 who used the mean-field approximation 
for the component Fco.~. Let us apply this approximation 

I.O 

o~ 0.5 
o 
d 

I 

I I I 
0 5  IO 1.5 

Log f 

F igure  9 The log- log plot of the star contraction coefficient g 
v e r s u s  the number of star branches f under 0-conditions: x the 
Monte Carlo simulation4; 0 5  and A 6, the experimental data. 
Slopes of straight lines ?0-0.5-0.6  
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AF _ R 2 [ N  "X 5/4 
(34a) 

f f l2 ,  ( N y / 4  / N ' X  5/4 
N p / f \ R  J + r N ~ - ~ )  min (34b) 

(Analysis shows that the use of ( i n  equation (34) is 
permissible for a wide class of intramolecular distri- 
butions c(r), in particular for the power law decreasing 
functions as in equation (24).) 

It is clear that equations (34a) and (34b) differs from 
equation (32a) only in the factor (N/R3) ~/4, which does not 
affect the result of minimization and gives the mean-field 
value of R+. 

This result is due to the fact that (as has been indicated 
in the Introduction), the Flory mean-field radius of a 
linear chain R 2 ~ N 6/5 (see equation (10)) is used as one of 
the basic points for the diagram of state (Figure 2) and 
scaling relations (Table 2). Equation (10) is manifested in 
power dependences of all characteristics. In the case of 
linear chains it requires, in particular, such a form ofR 2 (c) 
which ensures the equivalence of equations (32a) and (34). 
It is easy to see that if this equivalence is predetermined for 
a linear chain, it is also retained for a star-like macro- 
molecule. Thus the simplest scaling procedure transfers 
the assumption of the mean-field dimensions from linear 
to star-like chains. 

Moreover it can be shown that this conclusion is of a 
more general character and refers to the dimension of an 
isolated chain at any type of perturbations or restrictions 
introduced (e.g. for a chain in a slit, a branched chain, etc.). 
In the framework of the scaling scheme based on equation 
(10) the mean-field values will always be obtained. 

Comparison with other results 
We will first compare our results with those in 

theoretical papers 1-3,24, published in the last decade (see 
the list of earlier papers in ref. 1) and will consider the 
expansion coefficient of stars determined from equation 
(8) with respect to Gaussian size. 

2 (equation (29)) Three expressions were obtained for ~x 
in various regions of the diagram of state for stars (Figure 
7). The Gaussian region is present only for stiff macromo- 
lecules with p > 1. The stiffness of star-branched macro- 
molecules has not been taken into account previously and 
hence the existence of the region G in which expansion is 
absent, ~2 = 1, has not been predicted. 

As to the expansion coefficient ~2 and ~t 2, since R 2 and 
Ro 2 have the mean-field values, it could be expected that 
our data for flexible chains at p = 1 would be in complete 

agreement with the results of theories based on the mean- 
field approximation. In particular, the work of Candau et 
aL 1 has been carried out within this approximation 
according to Flory's scheme x4. In fact, the power de- 
pendences of~ on N and z are in complete agreement with 
those obtained in ref. 1 (as well as in refs. 2, 3 and 24): 
o:g,~ N °, o~ 2 ,~ N1/Szz/5. 

However, it was unexpectedly found that we obtained 
new values of exponents/~ determining the dependence of 
~t 2 on the number of branches f i n  a star, 

~2 ,~f#~ (35) 

Moreover, as can be seen from Table 3, it was found that 
an entire set of theoretical values of these exponents is 
reported in the literature 1-3,24. Evidently, to confirm our 
results it is advisable to analyse the reason leading to 
other values of fix. 

We will first consider the results reported in ref. 1 
obtained for the mean-field approximation by minimizing 
the free energy (equation (12)). This free energy takes into 
account binary or ternary interactions. This is also done 
in equations (32a) and (32b) in the paper presented here. 
The discrepancy between the equations in ref. 1 and 
equations (323) and (32b) is related to the term AFJkT.  
Candau et al.1 assumed that AFet/k T = R2/R 2 (by analogy 
with a linear chain). In the present work this term is 
greater by a f ac to r f  

It can easily be seen that in the former case the 
stretching of only one branch is taken into account, 
whereas the expansion of a star is related to the stretching 
of all f branches. We believe that the consideration of a 
star as a system of grafted chains makes this conclusion 
particularly clear. 

As a result of the underestimation of AFel Candau et al.l 
have overestimated the dependence of expansion on f, i.e. 
they have obtained excessively high values of fl + and fig 
(3/5 and 3/4 instead of 1/5 and 1/2, respectively, see Table 
3). The values of the exponent Yx = 1 - fix in the coefficient 
of star contraction 

g x ~ f  -~. (36) 

became too low, see equations (2) and (28a)-(28e) and 
Table 3, 

The same values of fig and Y0 in Khokhlov's paper 2 are 
due to the repetition of the same error as in ref. 1. Having 
shown that for a star the corrections due to the replace- 
ment of monomers (as interaction units) by quasi- 
monomers are not important, he reproduced the mean 
field results of ref. 1 for the 0-region using the same 
expression for AFar. 

Table 3 The exponents/~x and 3'x in the dependences ¢X2x ~ f~x,g x ~ f-~x, eqs. (35), (36). Index x indicates the region on the diagram of 
state of star-like macromolecules, Figure 7 

Theoretical values 
Experimental 

Candau, Khokhlov Daoud, data and 
Present Rernpp, Cot ton simulations, 

Exponent work  Benoit,  1 2 3 24 4 - 6  

/~0 1/2 3/4 3/4 1 1/2 -- 
/3+ 1/5 3/5 --3/5 -- 1/5 -- 

/3 G 0 . . . . .  
3'0 1/2 1/4 1/4 0 1/2 0.5--0.6 
3% 4/5 2/5 8/5 -- 4/5 -- 
• G 1 . . . . .  
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Even higher 0-expansion (flo = 1) is obtained in ref. 3. 
This was due to the complete neglection of the term AFel. 
In ref. 3 the 0-size of the macromolecule was determined 
with the aid of globules. In the scheme proposed in ref. 3 
the continuity of changes in macromolecular dimensions 
in the second-order phase transition coil~lobule 2° is 
used and the power asymptotics of the size of the globule 
R_ and the transition point rc should be known. By 
analogy with a linear chain 2° the author completely 
neglects the term AFel in the free energy of the globule and 
as a result the values R _ = (N/ lr l )  1/3 and zc = N -  1/2 as well 
as the 0-size of the star Ro = N 1/2 become the same as for a 
linear chain and are independent of f (the number of 
branches). 

Correspondingly, the coefficient of star contraction 
appears equal to unity (70 = 0, Table 3), i.e. the transition 
from a linear to a star-like chain does not change its 0- 
dimensions. 

A similar and just as paradoxical result has been 
obtained 3 for another system: a two dimensional 0-coil 
the volume of which was found to be equal to the 0- 
volume of a three dimensional coil. We suppose that the 
estimations of rc for these systems should be revised 
taking into account the value of AFel (see also ref. 21). 

In contrast, for ~2 Khokhlov 2 has obtained a decrease 
in expansion with f, which leads to an increase in star 
contraction as compared to the Gaussian chain (compare 

+ = 8/52 and ~G = 1, equation (4) and Table 3), although, as 
has been indicated in the Introduction, the degree of star 
contraction should be maximum for a Gaussian chain. 
According to our data, the increase infleads to a decrease 
in the relative rather than absolute expansion coefficient 
(equations (30a) and (30b)). 

After the present paper had been prepared for publi- 
cation (some of its results have been briefly stated in ref. 
23) a paper by Daoud and Cotton 24 dealing with the 
conformations of flexible star-like macromolecules and 
based on the scaling concept was published. As can be 
seen from Table 3, the values of fl + and flo obtained in ref. 
24 are in complete agreement with the results of the 
present work at p = 1. This agreement seems important 
because the specific applications of scaling formalism in 
this work and in ref. 24 were different. We proceeded from 
the analysis of a system of grafted chains passing from a 
planar to a spherical matrix and using the blob picture of 
the system only as an illustration. The authors of ref. 24 
have based their concept on the blob picture of a semi- 
dilute solution restricting themselves to the case of flexible 
(p= 1) chains. On the other hand, the structure of the 
compact nucleus of star-like macromolecules has been 
studied in greater detail in ref. 24. If the analysis carried 
out in this reference is extended to the case p > 1, it follows 
that the diagram in Figure  7 should be supplemented with 
the boundary f =  N2/ap 1/2. To the fight of this boundary is 
located the region of densely packed stars for which 
R = N ~ / 3 .  

Now we will compare these results with both the real 
experimental results 5'6 and those of a computer simu- 
lation 4. Figure  9 shows the dependences on f of the 
coefficient of star contraction under the 0-conditions (0- 
conditions for linear chains) observed in refs. 4-6. Al- 
though the experimental values o f f =  4-20 are not very 
high, the slopes of straight lines ~0=0.54).6 are in good 

agreement with the value obtained in the present work, 
~0=0.5. We could not find similar experimental de- 
pendences for the case of good solvent. The comparison 
with unpublished data carried out in ref. 24 confirms the 
values of fl + and ? ~. obtained in ref. 24 and in the present 
work (Table 3). 

Two-dimensional  s tars 

The conclusion drawn earlier, that the mean-field 
approximation is applicable (in the framework of primi- 
tive scaling) to the estimation of the size of macromolecules 
determining the intramolecular concentration of units; 
also makes it possible to find the star size in the two- 
dimensional case (adsorbed chains and chains in a slit). 
For  this purpose it is sufficient to replace in the second 
term on the right-hand side of equations (32a) and (32b) 
the tri-dimensionat volume R 3 by a two-dimensional 
volume R 2. 

For the region of a good solvent and the 0-region the 
results, as previously, are described by equations (33a) and 
(33b) in which the values of the index correspond to 
another space dimensionality d=2 ,  i.e. rE=3/4 and 
Vo = 2/321,22. 
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